MODERN CONCEPTION AS TO THE FUNCTIONAL MORPHOLOGY OF THE OLFACTORY SYSTEM AND ITS CHANGES UNDER THE INFLUENCE OF SOME EXOGENOUS POLLUTANTS

  • A.D. Shkodina Ukrainian Medical Stomatological Academy, Poltava, Ukraine
  • R.M. Hrinko Ukrainian Medical Stomatological Academy, Poltava, Ukraine
  • I.I. Starchenko Ukrainian Medical Stomatological Academy, Poltava, Ukraine
Keywords: olfactory anylazer, olfactory bulbs, mitral neuron, olfactory dysfunction.

Abstract

The interaction between a body and an environment provides the main aspects of human life. The study of the functional structure of the olfactory analyzer plays an important role both in clinical and in experimental studies, but the question of its features in humans needs detailed research. The paper presents the modern data of the structural and functional organization of the olfactory analyzer. Particular attention is paid to the structural organization of olfactory bulbs as most complicated and least studied component of the olfactory analyzer. The morphological and functional changes of the olfactory analyzer are developing in some diseases and in action of adverse environmental factors are described while the accentuation is placed on the differences of the mechanism in the pathogenesis of damage to the olfactory analyzer, depending on the nature of the influence of pathogenic factors. In this way as the result of short-term intense effects of the pollutant, irreversible atrophic changes are primarily affected to the olfactory epithelium, thus, to some extent, preventing the spread of the toxin to other analyzer structures. Conversely, a long-term exposure to low doses usually retains the functional activity of the olfactory epithelium, while harmful substances penetrate the central unit of the olfactory analyzer. In such cases, the olfactory dysfunction can be diagnosed after a long time after the start of the cohort with certain pollutants. Currently, studies of the influence of exogenous toxins on various parts of the olfactory analyzer on animal experimental models are quite active. At the same time, the issue of functional and morphological changes in various structural components of the human olfactory analyzer under the influence of negative environmental factors remains poorly understood and requires further morphological and biochemical studies, in order to be able to further develop effective therapeutic and prophylactic means.

Downloads

Download data is not yet available.

References

1. Angelo K, Rancz EA, Pimentel D, Hundahl Ch, Hannibal J, Fleischmann A et al. A biophysical signature of network affiliation and sensory processing in mitral cells. Nature. 2012;488:375-378.
2. Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathologica. 2014;4(127):459-475.
3. Azuma K, Uchiyama I, Uchiyama S, Kunugita N. Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings. Environmental Research. 2016;145:39-49.
4. Blotskiy AA. Miklyayeva NV. Grinko OA. Оsobennosti techeniya sinusitov u patsiyentov starshey vozrastnoy gruppy. In: Blotskiy AA, editor. Materialy mezhregionalnoy nauchno-prakticheskoy konferentsii otorinolaringologov Sibiri i Dalnego Vostoka s mezhdunarodnym uchastiyem. Aktualnyye voprosy otorinolaringologii; 2018 Jun 28-29; Blagoveshchensk. Blagoveshchensk: FHBOU VO AHMA MZ RF; 2018:194-200. [in Russian].
5. Bohdanov VV, Zavadskyi AV, Bohdanov VV. Narusheniya obonyaniya i kachestva zhizni. Rinologiya. 2012;4:65-71. [in Russiаn].
6. Buron G, Hacquemand R, Pourié G, Brand G. Carbon dioxide effects on olfactory functioning: Behavioral, histological and immunohistochemical measurements. Toxicology Letters. 2009;188(3):251-257.
7. Djomyna EN, Kastyro YV, Popadiuk VY, Blahonravov ML. Sovremennyi vzghliad na fyzyolohyiu oboniatelnoho y vkusovoho analyzatorov s tochky zrenyia LOR-patolohyy. Rossyyskaya otorynolarynholohyya. 2015;6(79):75-83. [in Russiаn].
8. Doty RL. Neurotoxic exposure and impairment of the chemical senses of taste and smell. Handb Clin Neurol. 2015;131:299-324.
9. Economo MN, Hansen KR, Wachowiak M. Control of Mitral/Tufted Cell Output by Selective Inhibition among Olfactory Bulb Glomeruli. Neuron. 2016;2(91):397-441.
10. Friedrich RV, Wiechert MT.Neuronal circuits and computations: Pattern decorrelation in the olfactory bulb. FEBS Letters. 2014;15(588):2504-2513.
11. Harvey BS, Weiming Yu. Maturation and Dysgenesis of the Human Olfactory Bulb. Brain Pathology. 2015; 26:301-318.
12. Karaban IM. Khvoroba parkinsona patohenetychni aspekty medykamentoznoi terapii ta klinichnoho perebihu. Naukovyy zhurnal MOZ ukrayiny. 2014;2(6):60-70 [in Ukrainian].
13. Kensaku M. The Olfactory System: From Odor Molecules to Motivational Behaviors. Tokyo: Springer; 2014. 205p.
14. Kikuta Sh, Fletcher ML, Homma R, Yamasoba T, Nagayama Sh. Odorant Response Properties of Individual Neurons in an Olfactory Glomerular Module. Neuron. 2013;6(77):1122-1135.
15. Kosaka T, Kosaka K. “Interneurons” in the olfactory bulb revisited. Neuroscience Research. 2011;2(69):93-99.
16. Lazzari M, Bettini S, Milani L, Maurizii MG, Franceschini V. Differential nickel-induced responses of olfactory sensory neuron populations in zebrafish. Aquatic Toxicology. 2019;206:14-23.
17. Li W, Lopez L, Osher J, Howars JD, Parrish TD, Gottfried JA. Right Orbitofrontal Cortex Mediates Conscious Olfactory Perception. Physiological Science. 2010;10(21):1454-1463.
18. Lucchini RG, Dorman DC, Elder A, Veronesi B. Neurological impacts from inhalation of pollutants and the nose–brain connection. NeuroToxicology. 2012;33(4):838-841.
19. Morozova SV, Savvateyeva DM, Ty`murziyeva AB. Obonyatelnyye rasstroystva u patsiyentov s psikhicheskimi zabolevaniyami. Zhurnal nevrologii i psikhiatrii. 2014;7:73-78. [in Russiаn].
20. Mukhin VN, Pavlov KI, Klimenko VM. Mekhanizmy umensheniya chislennosti neyronov pri bolezni Altsgeymera. Rossiyskiy fiziologicheskiy zhurnal im. I. M. Sechenova. 2016;2:113-129. [in Russiаn].
21. Muttray A, Klimek L, Letzel S. Toxische Hyposmie und Rhinitis eines Karosseriebauers und Lackierers. Ergo Med. 2003;27:106–111. [in German].
22. Oliveira-Pinto AV, Santos RM, Coutinho RA, Oliveira LM. [at al.] Sexual Dimorphism in the Human Olfactory Bulb: Females Have More Neurons and Glial Cells than Males. PLOS ONE. 2014;9(11):1-9.
23. Pigolkin YuI, Zolotenkova GV. Vozrastnyie izmeneniya kapillyarov koryi golovnogo mozga. Sudebno-meditsinskaya ekspertiza. 2014;57(1):4-10. [in Russiаn].
24. Rafieh A, Gholamreza H, Mansoureh S, Mohammad taghi J [at al.]. Gender and age related changes in number of dopaminergic neurons in adult human olfactory bulb. Journal of Chemical Neuroanatomy. 2015;69:1-6
25. Romashchenko AV. Petrovskiy DV. Moshkin MP. Kongruentnost intranazalnoy aerodinamiki i funktsionalnoy neodnorodnosti olfaktornogo epiteliya. Zhurnal obshchey biologii. 2017;1(78):13-24. [in Russian].
26. Rostovtseva LM, Babanina MU, Shkodina AD. Stvorennia zdoroviazberezhuvalnoho seredovyshcha u prymishchenniakh za dopomohoiu fitoremediatsii yak metodu ochyshchennia povitria vid formadelhidu. Materialy rehionalnoi naukovo-praktychnoi konferentsii IХ Mendelieievski chytannia; 2016 Feb 24; Poltava. Poltava: PNPU im. V.H. Korolenka, 2016:58-64. [in Ukrinian].
27. Semenova VM, Medvedev VV. Obonyatelnaya lukovitsa kak istochnik nakopleniya i differentsirovki neyralnykh stvolovykh kletok v postnatalnom mozge cheloveka. Ukrainskyi neirokhirurhichnyi zhurnal. 2014;2:4-9. [in Russian].
28. Shkolnikov VS, Stelmashchuk PO. Suchasni dani pro formoutvorennya ta tsytoarkhitektoniku struktur kintsevoho mozku lyudyny v prenatalnomu periodi ontohenezu. Visnyk Morfolohii. 2015;1(21):268-74. [in Ukrainian].
29. Stepaniuk YaV, Omelkovets YaA, Motuziuk OP. Porivniannia morfolohii osnovnykh niukhovykh tsybulyn deiakykh ssavtsiv. Zoolohiia. 2010;12:85-32. [in Ukrainian].
30. Tian L, Shang Y, Dong J, Inthavong K, Tu J. Human nasal olfactory deposition of inhaled nanoparticles at low to moderate breathing rate. Journal of Aerosol Science. 2017;113:189-200.
31. Tykhonova OO, Tarasenko YaA. Peryferychna nervova systema. Poltava:UMSA; 2012. 195s. [in Ukrainian].
32. Voznesenskaya VV. Plastichnost obonyatelnoy kommunikatsii. International journal of experimental education. 2012;6:10-12. [in Russiаn].
33. Werner S, Nies E. Olfactory dysfunction revisited: a reappraisal of work-related olfactory dysfunction caused by chemicals. Journal of Occupational Medicine and Toxicology [Internet]. 2018 Sep [cited 2019 Apr 3];13(2):1-26. Available from: https://doi.org/10.1186/s12995-018-0209-6.
34. Yuan J, Li Q, Niu R, Wang J. Fluoride exposure decreased learning ability and the expressions of the insulin receptor in male mouse hippocampus and olfactory bulb. Chemosphere. 2019;224:71-76.
Published
2019-06-19
How to Cite
Shkodina, A., Hrinko, R., & Starchenko, I. (2019). MODERN CONCEPTION AS TO THE FUNCTIONAL MORPHOLOGY OF THE OLFACTORY SYSTEM AND ITS CHANGES UNDER THE INFLUENCE OF SOME EXOGENOUS POLLUTANTS. The Medical and Ecological Problems, 23(3-4), 37-40. https://doi.org/10.31718/mep.2019.23.3-4.09