ETIOPATHEGENESIS AND DIAGNOSTICS OF THE MANDIBULAR PERMANENT FIRST MOLARS RETENTION

Voronkova H.V., Smagliuk L.V., Karasiunok A.Y.

Ukrainian Medical Stomatological Academy, Poltava

Introduction

According to the data of modern literature, in many countries of the world there is an increase in the frequency of dento-facial anomalies, including dental retention [1, 2, 3]. According to studies of various scientists, the delay in the eruption ranges from 0.8% to 17.4% of cases [1, 4].

Both temporary and permanent teeth may remain impacted. Among the permanent teeth, retention of the maxillary canines and mandibular premolars is more often observed; then retention of third molars on the lower
jaw follows; and, more rarely, the retention of the central and lateral incisors [5, 6, 7] is observed. Delayed eruption of the first mandibular molar is rare. Hence, P.S. Grover, L. Lorton [4] determined that its prevalence was less than 0.01%, and R.M. Kramer, A.C. Williams [8] reported that the prevalence of this pathology was 0.04%. At the same time, eruption of the first permanent molar is very important as it provides the harmony of the growth of the face and sufficient occlusion support. Disturbance in the eruption of this tooth can cause many problems, such as reduced vertical size of the lower face, extrusion of antagonists teeth, malocclusion, follicular cyst formation, peri-coronal inflammation, and resorption of the roots of adjacent teeth [9-11]. In this regard, issues of etiology, pathogenesis, early diagnosis and further treatment of retention of the lower first permanent molars are very relevant for a modern orthodontist. Therefore, a review of modern world literature, which would reveal these issues, became the aim of our research.

Materials and methods
A literary study was conducted using the Medline database and Google Scholar database. Keywords used in the search were “dental retention”, “disturbances in the eruption of the lower first molar”, “delayed teeth eruption”, “diagnostics of first lower molars eruption violations”.

Results
Teeth eruption is a physiological process that greatly affects the normal development of the craniofacial complex [12, 13]. In the special literature, retention is considered as a disturbance in the process of teeth eruption [14, 15]. Some authors consider impacted tooth as the one which has not erupted after end of the period of its physiological eruption, with the completed formation of the root, and with periodontal ligament located in the bone. Other specialists relate impacted teeth to those ones which have not erupted within two years after the period of their physiological eruption [16]. For diagnostic purposes, impacted teeth are classified according to three states: impaction, primary and secondary retention [17].

1. Impaction is the termination of tooth eruption caused by a clinically or radiologically identified barrier on the way of the eruption pathway or due to the incorrect position of the tooth.
2. Primary retention is defined as the termination of the eruption of a normally positioned and normally developed tooth before eruption through the gum without a physical barrier on the way of the eruption, and when the tooth eruption is delayed for more than two years.
3. Secondary retention is the termination of tooth eruption after appearance in the oral cavity without a physical barrier or ectopia of the tooth.

Most experts associate teeth eruption with the degree of their roots formation. According to Anastasia Keleakis-Cholakis, William Wiltchire (2006), the eruption of permanent teeth usually begins after the formation of one-fourth of their roots [18].

In another study, Haavikko [19] and Gron [20] reported that teeth erupted during the formation stage of approximately two-thirds of the root. According to other experts [21], teeth eruption can also occur with halfly formed root of the tooth.

However, Marks and Schroeder (1996) [22] observed teeth eruption without roots, which means, in their opinion, that the formation of the root itself is not a direct condition for teeth eruption, but it can speed up this process. The formed root apex of the impacted tooth, according to G.S. Gordon-Jury et al. [23], indicates a complete loss of potency to self-eruption.

Previous publications on the retention of the first permanent molars constitute mainly reviews of clinical cases with a small number of patients (Glass, 1951; Jerrold, 1966; Robinson, 1974; Watkins and Tucker, 1977; Melor, 1981; Lapeer, 1988; Raghoebar et al., 1990; Gropper, 1992; Hedge and Munshi, 2001), and obviously there is a lack of knowledge on the etiology and the possibility of restoring the process of their eruption (Kaban et al., 1976; Duncan and Ashrafi, 1981; Oliver and Hunter, 1986; Spieker, 2001) [24]. According to Kwon et al. [25], among 2,219 children examined at a primary school in Korea, the following average term for the eruption of the first mandibular molars was determined: for boys – 6.22 years, for girls – 6.12 years. According to the studies by Helm and Seidler [26], the term for eruption of the first mandibular molar in Danish children was 6.21 years for boys, 6.02 years for girls, and according to Ekstrand et al. [27]: 6.3 years for boys and 6.1 years for girls.

The authors did not substantiate the difference between the frequency of delayed eruption of the first mandibular molar by gender, but the total number of boys with this pathology was by 1.5 times higher than that of girls, and the difference in the prevalence of the left and right side was not significant.

Disturbance in the eruption of permanent teeth may be caused by systemic factors associated with endocrine abnormalities and syndromes [28]. Local factors causing delay in teeth eruption include impaired pathway for teeth eruption, abnormality of the tooth form, hyperplasia, displacement of the rudiment because of the cyst and the tumour, loss of space for eruption, gingival fibrosis, idiopathic conditions. Systemic factors include endocrine disorders such as hypothyroidism, hyperthyroidism, hypoparathyroidism, rickets, craniofacial hypertrophy.

Several authors (Reid, 1954; Brady, 1990; Ireland, 1891; DiBiase and Leggat, 2000), given the large number of hereditary cases, suggest that disturbance in the eruption may have a genetic component. There is evidence that the retention of molars is also under genetic control (Baccetti, 2000). Scientists point out that eruption disturbances are associated with the Mendelian inheritance scheme (Shokeir, 1974), and teeth eruption may be affected by a number of syndromes (cleidocranial dysostosis, osteopetrosis, etc.) [29].

As for the etiology of retention in the very first lower molars, this question has not been studied in detail in the literature. In particular, Marsuzaki et al. [30] investigated the reasons for the eruption delay of the very first lower molar. A total of eleven patients (4 boys and 7 girls with an average age of 9.5 years) were examined with the primary delay in teeth eruption. An estimation of clinical, radiological and histopathologic researches was conducted in order to identify the factors that prevent spontaneous eruption of the examined teeth, the choice of further surgical intervention and the course of the postoperative period. Histopathological diagnoses of patients included 3 odontogenic tumours, 2 odontogenic cysts and 6 hyperplasias of dental follicles.

In addition, Philipppias et al. [31, 32] also conducted histological studies of the mucous membrane, which
covers the impacted teeth (opercules). The material of 74 impacted teeth (first and second molars) was examined. In 24.3% of cases, the “classic” odontogenic tumours were diagnosed: ameloblastic fibroma (7), ameloblastic fibroodontoma (6), ameloblastic fibrodentinoma (6), ameloblastic fibroodontoma (4), and complex odontoma (1). 29.7% of the sample showed unidentified odontogenic lesion of hamartomatous nature, which was called giant-cell odontogenic fibromatosis. Thus, odontogenic tumours were diagnosed in 54.1% of the samples. Histomorphological changes were not detected in other 34 samples (45.9%). Odontogenic tumours were significantly more often associated with first molars than with other molars (8:1 ratio). Giant-cell odontogenic fibromatosis had a close connection with impacted mandibular molars. In addition, odontogenic lesions of the mucous membrane over the first molars of the mandible were more common.

C. Bereket, N. Cakir-Ozkan, I. Sener et al. (2011) [33] believe that one of the main etiological factors is the medial inclination of the eruption of the first mandibular molar for an unknown reason.

A study of 24,000 Danish children showed that there was a significant correlation between the period of teeth eruption within one field of innervation (Parner et al., 2002). Thus, the period of eruption of the first permanent molar in the mandible is closely related to other molars of the mandible. At the same time, there is no close connection between the first molars, incisors or premolars. Considering that mandibular molars have a separate innervation (Chavéz-Lomeil et al., 1996; Kjaer, 1998) in relation to incisors and premolars, the authors suggest that innervation could have an effect on the eruption process. Recently, the association between innervation and eruption has been proven experimentally (Fujyama et al. (2004) [34].

A number of scientists point out that local disorders of innervation caused by viral damage to the nerve pathways (Herpes zoster, epidemic mumps) can lead to delayed teeth eruption (Bang et al., 1995; Becktor et al., 2002). Short roots, osteonecrosis, periodontitis, retention, odontalgia, scars, dental agenesis, calcined and devitalized pulp, internal resorption of the roots are clinical manifestations that are described in combination with infectious lesion of the trigeminal nerve branches caused by herpes zoster (Cooper, 1977; Schwartz and Kvarning, 1982; Wright et al., 1983; Smith et al., 1984; Garty et al., 1985; Soloman et al., 1986; Goon and Jacobsen, 1988) [35]. One of the ways in which a viral attack can affect the development and teeth eruption is the spread of the virus through the peripheral nerve pathways to the teeth. This can cause temporary demyelination of nerve fibers, which can lead to decreased activity of nerve endings. It has been proven that demyelinated nerve endings are in close proximity to the tooth (Lambrichts et al., 1993), and it has been experimentally documented that the destruction of nerve fibers around the teeth affects the eruption process (Fujyama et al., 2004) and the activity of osteoclasts (Talic et al., 2003) [36].

Korean scientists [38], who thoroughly investigated clinical cases with a delayed eruption of the lower first molars, found that the average age at the time of diagnosis was 9.2 years, which was much later than the normal period of eruption. This indicates that the delay in the eruption of the lower first molar is poorly diagnosed both by patients and doctors.

In their research, scientists classified the type of retention of the lower first molars into four types in accordance with its position relative to the rudiment of the second molar and the second premolar (Fig. 1) [37]. The first type is characterized by the higher position of the first molar with respect to the rudiments of the second molar and the second premolar. In those cases, where the first molar was located above the rudiment of the second molar, but lower than the second premolar, one may speak of type II. In cases of type III, the first molar was located lower than the second molar, but above the second premolar. In type IV, the first molar was located lower than the second molar and the second premolar.
Scientific studies have shown that surgical exposure of the tooth during retention of the first mandibular molars was effective for further spontaneous eruption. Although, the overall ratio of the teeth, which did not erupt after surgery, was 16.9%, and especially in Type I, it was 6 out of 21 cases. Most of these unsuccessful cases did not have any visible physical barrier that could cause tooth retention and the lack of space. In these cases, an additional equipment-based method of treatment was applied, but this approach also had no result. Taking this into account, the researchers suggested the presence of ankylosis.

Diagnosis of teeth ankylosis is considered difficult for clinicians due to the lack of proper clinical method. Although it is known that ankylosing teeth produce high percussion sound and show low values with periosteal test, they are not considered to be convincing for measurement due to variable sensitivity [39]. Conventional 2-dimensional radiographic examinations, such as periapical or panoramic X-rays, cannot show ankylosing areas on the labial or lingual surfaces of the roots [39, 40]. Multispiral computed tomography in comparison with the cone-beam computer tomography for visualization of the periodontal ligament space more often indicates ankylosing area.

Conclusion

Literature review revealed a small number of studies on disturbances in the eruption of the first mandibular molar. Most of them were presented with clinical cases. The authors point out the need for further research in this direction. Untimely diagnosis and treatment of the retention of the first permanent molars increases the degree of complications. Therefore, it is important to carry out early diagnosis and treatment by periodic dental examinations starting from 6 years.

References


